

ANANDALAYA PERIODIC TEST – 2 Class: IX

M.M : 80 Time : 3 Hours

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub- parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, internal choices in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Qs of 2 marks have been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION A

	Section A consists of 20 questions of 1 mark each.								
1.	If $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$		1		(1)				
	(A) 2	(B) - 2	(C) 3	(D) 4					
2.	Simplified form of ((B) -2 $\left(\sqrt{2} + \frac{1}{\sqrt{2}}\right)^2$ is			(1)				
	(A) 4	$(B)\frac{2}{\sqrt{2}}$	$(C)\frac{2}{9}$	(D) $\frac{9}{2}$					
3.	Which of the followi	ing expression is a poly	ynomial of degree 2?	2	(1)				
		(B) $\sqrt{2x^2}$ –		$(D)\sqrt{2}x^2 - \sqrt{5}$					
4.	If $P(x) = x^{51} + 51$, then $P(-1) = $ (B) -51	•		(1)				
			(C) 50	(D) 52					
5.	Where does the poin	t (0, $2 - \sqrt{3}$) lie?			(1)				
			(C) IV th quadrant	(D) Ist quadrant	(1)				
6.	If $\sqrt{2^x} = 64$ then	x = ?	1	1	(1)				
	(A) 12	(B) 6	$(C)\frac{1}{12}$	(D) $\frac{1}{6}$					
7.	Find the value of m if $x = -1$ and $y = 4$ is a solution of the equation $mx - y = -6$.								
	(A) −2	(B) 2	(C) -10	(D) 10	(1)				
8.	Which one of the following is the solution of the equation $2x + 3y = 12$.								
	(A) $(3, \frac{2}{3})$	(B) $\left(5, \frac{2}{3}\right)$	$(C)\left(3,\frac{3}{2}\right)$	(D) (5, 1)					
9.	In the given figure, $\angle 1 = \angle 2$ then the measurements of								
	∠3 and ∠4 respectiv	58°							
	(A) 58°, 61°								
	(C) 119°, 61°	(D)119°, 119°	*	3 1 2 4					
10.	In the given figure, AB DE, then measure of $\angle ACD$								
	isC								
	(A) 43° (B) 4	0° (C) 83°	(D) 97°	D 43° E					
				-					

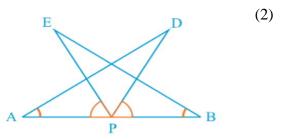
11.	In the given figure, F (A) 20° (C) 30	POQ is a line. The valu (B) 25° (D) 35°	e of x is	4x 40° $3x$ 3x		(1)	
12.	Angles of a triangle a (A) 20°	are in the ratio 2 : 4 : 3 (B) 40°	3. The smallest angle (C) 25°	of the triangle is (D) 80°		(1)	
13.	Write the coefficient (A) -1	of y in the expansion $(B) - 20$	of $(10 - y)^2$. (C) 20	(D)-10		(1)	
14.	If $a = \sqrt{2} + 1$, find the value of $\left(a - \frac{1}{a}\right)^2$						
		(B) -4		(D) 2 √ 2			
15.	Find the remainder w (A) 42	when $4x^3 - 3x^2 + 4x^3$ (B) -26	x - 2 is divided by (C) 24	x - 2. (D) 26		(1)	
16.	In $\triangle ABC$, $BC = AB$ and $\angle B = 80^\circ$. Then $\angle A$ is equal to						
	(A) 80°	(B) 40°	(C) 50°	(D) 100°			
17.	It is given that $\triangle AB$ the following is true (A) DF = 5 cm, $\angle F$ = (C) DE = 5 cm, $\angle E$ =	= 60°	= $5 cm, \angle B = 40^{\circ}$ (B) DF = $5 cm, \angle 1$ (D) DE = $5 cm, \angle 1$	$E = 60^{\circ}$	en which of	(1)	
18.	If $AB = QR$, $BC =$ (A) $\triangle ABC \cong \triangle PQ$ (C) $\triangle BAC \cong \triangle RP$		then (B) $\Delta CBA \cong \Delta F$ (D) $\Delta PQR \cong \Delta F$	C		(1)	
	In the following questions 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices						

Reason (R). Choose the correct answer out of the following choices.

(A) Both A and R are true and R is the correct explanation of A.

(B) Both A and R are true but R is not the correct explanation of A.

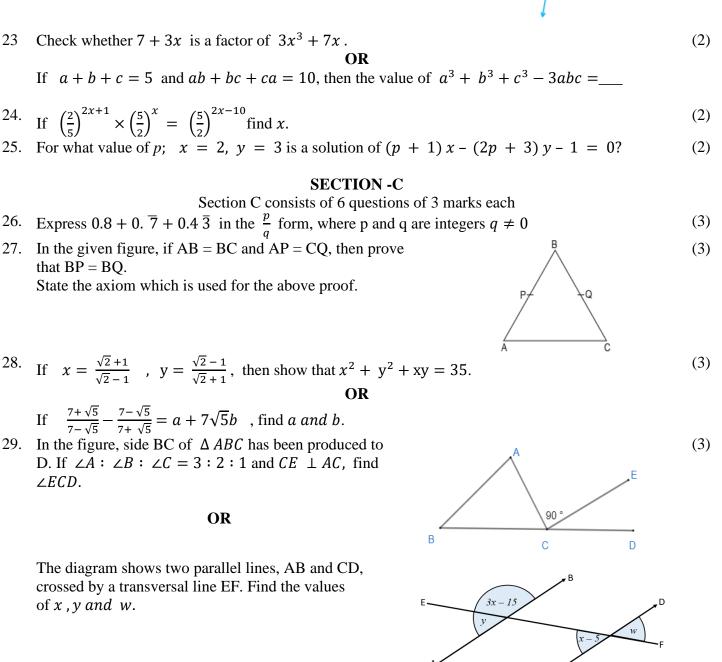
(C) A is true but R is false.

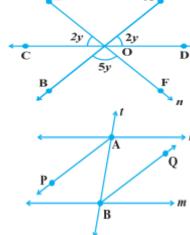

(D) A is false but R is true.

- 19. Assertion: There is only one rational number lying between $\frac{1}{2}$ and $\frac{1}{3}$ (1) Reason: Rational number lying between two rational numbers *x* and *y* is $\frac{1}{2}(x + y)$.
- 20. Assertion: In $\triangle ABC$, AB = AC and $\angle B = 50^{\circ}$ then $\angle C = 50^{\circ}$. (1) Reason: Angles opposite to equal sides of a triangle are equal.

SECTION - B

Section B consists of 5 questions of 2 marks each.

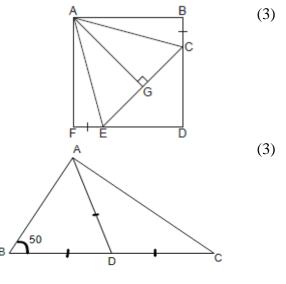

21. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Fig.). Show that (i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE



22. Given AB, CD and EF are three lines intersecting at O. Find the value of y.

OR

AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines l and mShow that AP || BQ.



30. ABDF is a square and BC = EF in the given figure. Prove that

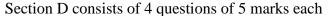
(i) $\triangle ABC \cong \triangle AFE$

- (ii) $\varDelta ACG \cong \varDelta AEG$
- 31. In the figure, D is the midpoint of the side BC of $\triangle ABC$ and $\angle ABD = 50^{\circ}$. If AD = BD = DC, find the measure of $\angle ACD$.

(5)

(5)

Z


45

С

Е

34°

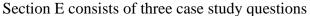
SECTION -D

32. In the given figure, $\triangle XYZ$ and $\triangle PYZ$ are two isosceles triangle on the same base YZ with XY = XZ and PY = PZ. If $\angle P = 120^{\circ}$ and $\angle XYP = 40^{\circ}$, then find $\angle YXZ$.

OR

In the given figure, find the value of *x*.

33. Find four different solutions of the equation x + 2y = 6. Plot these points on a graph paper and (5) show all points lie on a line.


34. Two polynomials $p(x) = ax^3 + 3x^2 - 13$ and $q(x) = 2x^3 - 5x + a$ when divided by x + 2 (5) gives the same remainder. Find the value of a.

OR

Factorise using factor theorem:
$$x^3 - 6x^2 + 11x - 6$$

35. Show that : $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 1$

Show that :
$$\frac{1}{3+\sqrt{7}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{1+\sqrt{3}} = 1$$

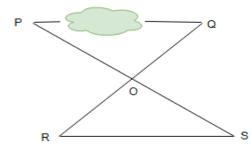
SECTION – E

36. Students of a school are standing in rows and columns in their playground for a game. A, B, C and D are the positions of four students as shown in the figure. Use the concepts of co-ordinate geometry to find the following.

ii) Distance between C and D = _____ iii) Abscissa of C – Ordinate of D = _____ OR iii) Perpedicular distance of the point D from y –

i) Write the co-ordinates of A and B.

axis =_____.


- 37 The parking charges of a car at Vadodara Railway station is ` 50 for the first 4 hours and ` 10 for subsequent hours. Taking total parking time to be x hours and total charges as ` y, answer the following.
 - i) Write the linear equation to express the above statement.
 - ii) Mansi parked her car for 7 hours. How much amount she has to pay for parking?
 - iii) Mansi wanted to draw the graph of the linear equation, help her to find two sets of co-ordinates. (2)

(1)

(1)

OR

- iii) Graph of the linear equation intersect y- axis at the point whose co-ordinates are _____.
- 38 During education tour of class IX, the teacher asked the students to measure the distance between the two objects P and Q including an obstacle between them. This obstacle prevents the students for direct measurement. One of the students devises an ingenious solution to the problem. Firstly, she fixes a pole at a convenient point O so that both P and Q are visible. Then, she fixes another pole at point S on the line PO produced such that PO = SO. In a similar way, she fixes a third pole at point R on the extended line QO such that QO = RO. Then she measures the distance between R and S.

- i) Is she able to measure the distance between P and Q?
- ii) Which congruence condition can be applied here to find the distance PQ? (1) iii) Is $\Delta ORS \cong OQP$? why? (1) OR (2)
- iii) If $\angle POQ = 95^{\circ}$, $\angle QOS = ?$